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Tne metion of a vortex sheet undergoing Kelvin—Helmholtz instability
is known to be ill-posed, causing deterioration in numerical calcula-
tions from the rapid growth of round-off errars. In particular, it is the
smallest scales (introduced by round-off ) that grow the fastest. Krasny
(f12]) introduced a spectral filter to suppress the growth of round-off
errors of the smallest scales. He was then able to detect evidence
supporting asymptotic studies that indicate the formation of a curvature
singularity in finite time. We use high precision interval arithmetic,
coded in C+ +, to re-examine the evolution of a vortex sheet from
initial conditions used previously by several researchers. Most impor-
tantly, our results are free from the influence of round-off errors. We
show excellent agreement between results obtained through high
precision interval arithmetic and through the use of Krasny's spectral
filter. In particular, our results support the formation of a curvature
singularity in finite time, After the time of singularity formation, the
markers move in peculiar patterns, We rule out any possibitity of this
motion resulting from round-off errors, but it does depend on the level
of resolution. We find no consistent behavior in the motion of the
markers as we improve the resolution of the vortex sheet. Also, we find
some disagreement between the results obtained through high
precision interval arithmetic and through the use of the spectra! filter.
© 1994 Academic Press. Inc.

1. INTRODUCTION

Vortex sheets arise frequently as models for thin shear
layers or sharp interfaces between inviscid liquids. They are
defined as surfaces (curves in two-dimensional flow) across
which the fluid velocity, u, has a jump discontinuity in its
tangential component. Mathematically, a vortex sheet can
be regarded as a delta function, defined on a surface, of the
vorticity @ =V x u. Some examples of studies of free-surface
flows based on vortex sheets include Rayleigh-Taylor
instabilities [3, 20, 26, 25, 27; the motion of bubbles or
drops {5, 28, 13, 9); and the motion of water waves
and internal waves [4, 20, 21]. Evidence from these

caiculations, in particular [2,9], shows that curvature
singularities form in finite time unless one side of the
interface is a vacuum.

The underlying mechanism for singularity formation is
believed to be the Kelvin—-Helmholtz instability { 10]. As the
interface moves, regions form where the liquids flow with
different speeds on either side of the interface. These regions
appear on a small enough scale to be vortex sheets with
almost uniform strength. These regions then suffer from the
rapid development of the Kelvin-Helmhoitz instability,
where disturbances of the smaliest length grow the fastest.
Such behavior 15 a typical manifestation of ill-posed
behavior.

The two-dimensional, periodic motion of a vortex sheet
is governed by the periodic form of the Birkhoff-Rott
equation,
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where z(p, 1Y=x(p, t)+iy(p, t) gives the location of the
sheet at time ¢, We assume the parametrization for the inter-
face satisfies, z{p + 2n, 1) = 21 + z(p, 1). The un-normalized
vortex sheet strength u(p) is a constant in time. The super-
script * implies complex conjugation, and the integral is
taken as a principal value.

Normally, studies of Kelvin—Heimholtz instability con-
sider the evolution of periodic disturbances to a flat sheet,
z=p, of uniform vortex sheet strength, u=1. Asymptotic
studies [15, 17, 7] have presented an interesting mathe-
matical picture of how singularities form on vortex sheets.
The analytic extension of x(p, ), y(p, t) to the complex p
plane shows the presence of branch point singularities away
from the real axis of p. In time, these singularities move

275 0021-9991/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



276

towards the real axis of p and reach it in finite time. At this
moment, a singularity in curvature becomes physically
apparent. Recently, there has been much interest in
confirming the asymptotic results by direct numerical
solution of (1),

Ever since the first calculations by Rosenhead [22],
various numerical methods have been applied to (1)
Usualiy a simple, standard quadrature rule is applied to the
integral and collocation is used to obtain a system of
ordinary differential equations for discrete markers on the
interface. Rosenhead introduced the approximation, based
on the trapezoidal rule,
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that has become known as the point vortex method. Here
z;=x(jh)+ iy(jh) and g, = p(jh), where Nh=2n Unfor-
tunately, numerical results always run into difficulties with
the rapid development of the smallest scales available in the
discretization [23]. Much of the early debate centered on
whether truncation errors or round-off errors produce the
irregular motion [6, 8, 27, 16]. The truncation error for the
point vortex method is only O(#) because of the poor
numerical approximation to a principal-valued integral.
Krasny [127] made much progress in addressing these
issues by using different levels of precision in his numerical
calculations and showing clearly that the irregular motion
of the markers is reduced with increasing precision. Even by
using the highest precision available on standard com-
puters, results still show the effects of round-off when using
the large number of markers necessary to understand
singularity development. Instead, Krasny introduced a
spectral fiiter; the Fourier coefficients of x{p, ), y(p, t) are
determined by using the fast Fourier transform, and all the
coefficients below a certain filter level are set to zero. A new
profile is reconstituted by the inverse fast Fourier transform.
Without the filter, the Fourier spectrum of the initial data
decays until the coefficients contain only round-off values.
Because of the mathematical properties of the motion, the
round-off values in the very highest wave-numbers grow
the fastest, so that the profile soon becomes irregular. By
selecting an appropriate filter level, these coefticients remain
zero until nonlinear effects in the equation produce values
above the filter level. Krasny's results show convergence
with improvement in resolution up until a critical time, ¢,.

Detailed examination of the Fourier spectrum shows con- -

sistency with the interpretation that complex singularities in
the p plane are approaching the real axis and reaching it at
a time close to (if not equal to) .. The numerical results do
not converge after 7., and there is a difficult mathematical
question on the nature of the vortex sheet after singuiarity
formation.
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Subsequently, Shelley [24] used a spectrally accurate
method [257] for the Birkhoff-Rott integral (1),

dz* [ z;(0) — z,(7)
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together with the spectral filter to control round-off errors.
He examined the influence of the filter level and found that
very low filter levels are needed to obtain good accuracy in
studying the behavior of the singularities in the complex p
plane. Other work [19] also describes the influence of the
filter level. While the results presented in these numerical
studies involving spectral filters is persuasive, there is still
the possibility that the filter acts in a subtle way to change
the Fourier spectrum and so change the numerical solution.
In this paper, we shall show convincingly that this is not the
case.

While the main thrust of our study is to check the
reliability of the spectral filter, the use of non-interval, high
precision, floating point computations may be a practical
option for vortex sheet motion without spatial pertodicity.
For example, we mention the MPFUN package of D. H.
Bailey at NASA Ames, which provides a translator for
standard Fortran to high precision code. Such an approach
does not bound the round-off errors but may be somewhat
faster than the use of intervals.

2. HIGH PRECISION INTERVAL ARITHMETIC

We apply high precision interval arithmetic to solve (3}
with initial condition z;= j and with p;=1+ acos(jh).
Our choice is motivated by the desire to compare with the
results of Shelley [24].

Interval arithmetic [18] was introduced originally as a
way to track bounds on the influence of finite precision
rigorously. Numbers are represented by intervals, and
arithmetic operations produce new intervals inside of which
the actual result must lie. Unfortunately, for ill-posed
problems the intervals soon become too wide for any useful
information when the standard precision available on com-
puters is used. Instead, we employ interval arithmetic, coded
especially in high precision, so that we can guarantee the
level of accuracy in the results even for late times of the
solution to (3). Consequently, we can clearly separate the
influence of the errors associated with round-off and with
discretization.

Of course, our results will still suffer from truncation
errors. Since the spatial discretization of the integral is
spectrally accurate (at least before the singularity time),
the truncation error is dominated by the method used to
advance the solution in time. We employ several different
methods; simple Euler, Runge-Kutta, Adams—Moulton,
and Taylor series. Unfortunately, the cost of using high
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precision interval arithmetic on this problem is high, so we
are limited in the resolution we can use. Nevertheless, we
believe we obtain sufficient accuracy to confirm the
reliability of the spectral filter, which is far more economical
to use. )

As a start, we merely guess the precision needed in the
initial data. If the precision is inadequate, the intervals con-
taining the exact result will grow too wide too quickly. By
requesting more precision in the initial data and re-running
the calculation, we will obtain much narrower intervals for
a longer peried of time. Of course, we pay an additional cost
in computer time to obtain the more accurate results. The
importance of intervals, as opposed to merely higher preci-
sion floating point numbers, is that with a wide interval, we
know the answer is not very good and can then decide if we
want to pay the price for a more accurate answer. Likewise,
if we do choose higher precision, and if all intervals are
narrow enough, we know the results are essentially free of
round-off errors. This is precisely the tool needed to rule
out round-off effects in the numerical solution of the
Birkhoff—Rott equation (1).

For our first calculation, we use 128 bits of mantissa with
N=40 and a time-step of 4r=0.15. The code runs for
nearly 7 days on a 68030 processor and terminates because
an interval becomes so wide that it allows a possible divide
by zero. If we are to have any hope of calculating with a finer
grid, some computational speedup must be discovered.
Fortunately, the symmetry, z(n+ p, 1)=2n—z(n—p, t},
allows us to halve the range of integration and, more
importantly, allows us to rewrite (1) as
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(see (14) in the Appendix for a derivation of the result). In
this form we need only O(N) evaluations of cos and sin at
each time level (although the entire algorithm still requires
O(N?) operations), whereas direct usc of the original form
requires O{N'?) trigonometric evaluations. Since high preci-
sion, trigonometric interval calculations are very expensive,
this is a major improvement. We test the new approach with
N =10 against the results of the previous approach with
N =20 and find complete agreement.

In Fig.1 we show the results of applying the fourth-
order Adams-Moulton predictor-corrector with time-step
0.09375 and N = 64 markers: we use 448 bits of mantissa
and the calculation takes about 14 h on a 68030 processor,
Beyond the time r=1.6875 a peculiar pattern in the
markers soon sets in. Because we can bound the influence
of round-off in these calculations (the widest interval
< 1072), we know this peculiarity is not caused by round-
off errors.
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FIG. 1. A sequence of profiles showing the position of the vortex sheet
in a periodic window as time increases. Results are shown from top to
bottom at times: 1.5, [.6875, 1.873, 206235, 2.25. Results are obtained with
Ar=9375x 1072, N =64, and 448 bits of mantissa.

To achieve our finest levels of resolution, we introduce a
further simplification by defining #(p, 1) =cos(z{p, t)). We
then transform (4) into
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Details are given in the Appendix. With this form we
eliminate all trigonometric calculations except the deter-
mination of the initial condition for & which requires N/2
evaluations of cos{g). Of course, we will still have to invert
the trigonometric mapping to graph the resuits, but this can
be done in the usual low-precision, floating point format
(specifically, the intrinsic C+ + subroutines) as any round-
off incurred in the single inversion per point is graphically
unobservable. When we wish to study the Fourier coef-
ficients at select time levels, we invert the trigonometric
mapping in high precision interval arithmetic. Since we do
this only occasionally, the cost is not excessive.

In Fig. 2 we show the results of just such a trig-free
calculation. We use the fourth-order Adams-Moulton
predictor-corrector with a time-step of 5.859375 x 10 =% and
N =128. The results are obtained using 1152 bits of man-
tissa and require more than 3 days of processing. The widest
interval during the calculation has width < 10~%°, so we are
certain that round-off errors are negligible in our results.

We show the results in Figs. 1 and 2 at the same times to
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FIG. 2. A sequence of profiles showing the position of the vortex sheet
in a periodic window as time increases. Results are shown from top to
bottom at times: 1.5, 1.6875, 1.875, 2.0625, 2.25. Results are obtained with
At=35859375x 10~% N= 128, and 1152 bits of mantissa.

highlight the influence of resolution especially at times
around and beyond the singularity time 1, = 1.615. At times
well beyond ¢, improvement in resolution does not give a
smoother curve; in fact, the markers are even more erratic.
Since truncation errors are the only significant errors in our
results, we conclude that solutions to the discrete equation
(3) will not converge to a smooth curve after the singularity
time in the limit of infinite resolution. One possibility is that
there is no smooth solution to (1) after the singularity time.
Another possibility is that the soiution undergoes a
topological change which is no longer weli resoived by our
numerical approximation. For example, current speculation
is that at r=r_, the curvature singularity is immediately
replaced by an infinitely small doubly branched spiral that
subsequently grows in size.

3. FOURIER ANALYSIS

According to asymptotic predictions [15,17,7], a
complex conjugate pair of branch point singularities in the
complex p plane will move towards the real axis and reach
it in finite time. If the branch points of power f—1 are
located at p, = (2m + 1) n + ix, then the coefficients 4,(r) of
the Fourier representation,

2p)=p+ Y Alt)e™,

k=—o

(6)
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will have the behavior for large &,

| Ax(t)] ~ Ck = Fe =%, (7)
This behavior is true also for the real and imaginary parts
of z(p, r), and in practice, the"Fourier coefficients of the
numerical results for x(p, t)and v(p, t) are compared to the
form (7). The fact that the singularities lie along lines at odd
multiples of 7 is a consequence of our choice of initial condi-
tion. In previous work, the Fourier spectra of the numerical
results are compared with (7) by a least squares fit over a
suitable range in & [127]; the agreement is reasonably good.
An alternative approach is introduced by Pugh [19] to
study singularity formation on interfaces in Boussines flows
and applied by Shelley [24] to the Kelvin-Helmholtz
instability. A local fit of data poins at k — 1, &, £+ 1 is used
to determine a (k, 1), B (k, 1), C Ak, 1), and o (k, 1), B (&, 1},
C (k, 1), where the subscripts x or y indicate whether x(p, 1}
or y(p, t), respectively, is used to obtain the coefficients. The
coefficients can be easily determined from the equations,

In|4, () =InC—Flnm—am,

for m=k—14kk+1 (8)
At a fixed time ¢ the behavior of the locally fitted
coefficients can be studied for large k. If the asymptotic
predictions are correct, then these coefficients should tend
to constant values for large enough k. Shelley [24] uses this
approach to confirm Krasny’s [12] results and to study the
influence of the spectral filter. He finds that by reductng the
filter level, the results of the form fit settie down to a
behavior that is determined by the resolution of the calcula-
tion, Over an intermediate range of k, the coefficients
asymptote to constant values. For &k near N/2, there is
divergence from these constant values, reflecting the
influence of truncation errors. Because Shelley uses a spec-
tral method, the truncation effects are limited to values of k
near N/2. Shelley introduces a correction to (8) that gives
improved estimates for the coefficients. Since we are mainly
concerned with the influence of the spectral filter, we repeat
Sheliey’s calculations, but in high precision interval
arithmetic. We fit our numerical results to {7) by means of
(8} and compare our values for the coefficients with those
obtained through use of the spectral filter.

In Fig. 3, we show the results of the form-fit at time
r=1.5. Our resuits are obtained from calculations of (5)
with ¥ =128 by using high precision interval arithmetic.
We vary the time-steps in the fourth-order Adams-Moulton
predictor—corrector to check the accuracy of the resolution.
In the first three columns, we show the improvement in the
results as the time-step decreases from 4t = 4.6875x 10~ 2 to
Ar=29296875x 103 In the final column, we give the
results from using a spectral filter at a level 6 =107
applied to the solution of (3). Following Shelley, we use the
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FIG. 3. The coefficients, « and 3, determined locally for the form fit (7)
and obtained from high precision interval arithmetic with different step-
sizes. Columns 1-3 correspond to 4r=4.6875x 1072 234375% 1072,
29296875 » 107, respectively. The last column gives the results from

application of a spectral filter with A¢ = 29296875 x 103, All celumns are
snapshots at time 1.5,
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fourth-order Adams—Moulton predictor—corrector and run
our code in double precision on a CRAY Y-MP/64. We use
N =128 and a time-step At = 2.9296875 x 10~ to be able to
make a direct comparison with the results in column 3.

We show the results only for the physically important
coefficients « and B in the fit to the Fourier coefficients of
x(p, ¢) and y(p, t). Similar results are obtained for the coef-
ficient C. A comparison of the results in columns 3 and 4
show excellent agreement between calculations based on
high precision interval arithmetic and on the spectral filter.
In fact, the position of the markers agree to 10 digits except
very near to p = 7, where the agreement is eight digits. There
is a 34 digit agreement in the values of @ and . Aithough
we show only one such comparison, the result is typical for
times before the singularity formation, 1 =1.615+0.01.
Incidentally, the fact that the values of « and f diverge
abruptly near & =64 from their nearly constant values is
associated with the spatial resolution. Shelley shows that
increases in N extend the range for which o and § remain
close to constants.

Next we consider what happens to the form fit as time
approaches and passes ¢,. In Figs. 4 and 5, we show « and
B obtained through calculations in high precision interval
arithmetic and through application of a spectral filter,
respectively. These results have the same resolution as those
in column 3 and 4 in Fig. 3. Note how the coefficient «
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F1G. 4. The behavior of the coefficients, x and £, determined locally for the form fit (7) and obtained from high precision interval arithmetic for
various times: 1.5, 1.546875, 1.59375, 1640625, 1.6875 with 4¢ = 29296875 x 10—,
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FIG. 5. The behavior of the coefficients, « and §, determined locally for the form fit (7) and obtained from use of a spectral filter for various times:

1.5, 1546875, 159375, 1.640625, 1.6875 with At = 29296875 x 10,

passes through zero between ¢=159375 and 1.640625,
Since Shelley has discussed fully the implications of these
results, we include a brief summary for the interested reader.
By extrapolating the change of o in time, Shelley obtains the
estimate, ¢, = 1.615 + 0.01. At that moment, the convergence
of the Fourier series is dictated by the algebraic decay in the
coefficients. Shelley shows that § ~2.5 by including more
terms in the asymptotic behavior (7), although he does
detect B, > f, (f, =~ 3} for large initial amplitudes. In either
case, the second derivative of z(p, t,} blows up, indicating
the presence of a curvature singularity. For times just
beyond ¢,, o appears negative, and the Fourier series does
not converge.

In this paper, our main interest is in examining the
possible influence of the spectral filker. We note that even up
to r=1640625, just after singularity formation, there is
excellent agreement between both methods. However, at

=1.6875, there are clear differences between the coef-
ficients of the form fit to the Fourier coefficients of x(p, ¢).
It is important to recognize that when « is small, that is, just
before ¢, the decay of the Fourier spectra is so slow that all
amplitudes up to k =64 lic above the filter level, so that in
effect the filter is turned off. Consequently, the differences in
data at ¢ = 1.6875 reflect the presence of very small differen-
ces in the data before ¢,. In this regard, the filter does have
an important influence on the results. There remains much
current interest in the nature of the vortex sheet beyond ¢,

4. CONCLUSIONS

Calculations with high precision interval arithmetic
confirm that the motion of a vortex sheet is well defined up
to the time of singularity formation. Beyond this time, the
erratic motion of the markers is not caused by round-off
errors. Application of the spectral filter of Krasny [12] also
suppresses the growth of round-off errors with excellent
agreement with results from high precision intervai
arithmetic. However, agreement is lost after the singularity
time. The sensitivity of the motion of the markers to round-
off errors or truncation errors after the time of singularity is
clearly demonstrated.

APPENDIX

We take advantage of the symmetry in our problem to
reduce (1) to a form more suitable for high precision
calculations. We start with the equation

oz* 1 2z
S (P 0=3=PV.| (1+acos(q))

« cot (z(p, t);z(q, t)) dq 9)
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and initial condition z(p,0)=p. Consider the above
integral from just w to 2z and make the substitution,
¢ = Q + . By using the symmetry

Hn+Q)=2n—z{n - Q), {10)
we obtain
T , -,
PV.[ (1-acosQ)cot (Z(p J+zm—Q )) do.
o=0 2
(11)
We use another substitution, g =7 — (, to obtain
n , !
PV, f {1+ acos g)cot (%) dq. (12)
0

By adding (12) to the integral from 0 to = in (9) and by
using the relation

2sinfa + §)
_ 1
cot o+ cot f§ Cos(a_ﬁ)_cos(a-{-ﬁ)’ (13)
we find
dz* sin z(p, t) i 1+acosq
H=——""""PpY, )
a1 (ps ) i ,[0 CcOSs Z(q, I)—COS Z(P; t) 1
(14)

Now define A(p, t)=cos z(p, t), then A*(p, ) =cos z*{(p, 1)
and

oh* az*(p, 1)

2L — _qin =* 2 MBS
P (p, ) sin z*(p, 1) R

=_|SiﬂZ(P,I)i2PVJ‘" 1 +acosg

2mi o €Os z(g, t)—cos z(p, t)

Isin z(p, t)| n l4+acosqg
=——""PV. d
2ni L cos z(g, t)—cos z(p, t) 1
[1=#2(p, )| = 1+Acosyg
=w——PV.] ——dy. 15
2w '[0 hig, t}-hip, 1) 2. (19

Our initial condition becomes A{ p, 0) = cos p.
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